Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.23.453472

ABSTRACT

The Delta variant originally from India is rapidly spreading across the world and causes to resurge infections of SARS-CoV-2. We previously reported that CT-P59 presented its in vivo potency against Beta and Gamma variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on the Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal study. CT-P59 showed reduced antiviral activity but enabled neutralization against Delta, Epsilon, and Kappa variants in cells. In line with in vitro results, the mouse challenge experiment with the Delta variant substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against the Delta variant infection, hinting that CT-P59 has therapeutic potency for patients infected with Delta and its associated variants.


Subject(s)
Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.08.451696

ABSTRACT

P.1. or gamma variant also known as the Brazil variant, is one of the variants of concern (VOC) which appears to have high transmissibility and mortality. To explore the potency of the CT-P59 monoclonal antibody against P.1 variant, we tried to conduct binding affinity, in vitro neutralization, and in vivo animal tests. In in vitro assays revealed that CT-P59 is able to neutralize P.1 variant in spite of reduction in its binding affinity against a RBD (receptor binding domain) mutant protein including K417T/E484K/N501Y and neutralizing activity against P.1 pseudoviruses and live viruses. In contrast, in vivo hACE2 (human angiotensin-converting enzyme 2)-expressing TG (transgenic) mouse challenge experiment demonstrated that a clinically relevant or lower dosages of CT-P59 is capable of lowering viral loads in the respiratory tract and alleviates symptoms such as body weight losses and survival rates. Therefore, a clinical dosage of CT-P59 could compensate for reduced in vitro antiviral activity in P.1-infected mice, implying that CT-P59 has therapeutic potency for COVID-19 patients infected with P.1 variant.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL